Overview of Statistical Testing in Q
Project & tablespecific Statistical Assumptions settings Q Rules that might override settings 
Select significance test to run based on the data and settings Calculate pvalues  The computed pvalues for each cell can be shown by selecting p from Statistics  Cells. 
The result is displayed as being significant in accordance with the chosen method of display: Testing the cell complement:

Examples of when significance testing is conducted
The user can specify which relationships are to be tested by:
 Creating tables manually, by selection weights filters and questions from the blue and dropdown menus. Each cell in the table is then tested.
 Selecting individual cells on the table and pressing .
 Creating large batches of tables using Basic Tables. This is equivalent to creating tables manually, except that many are done at the same time.
 Creating batches of tables using Smart Tables. As with Basic Tables, this causes lots of tables to be created with significance tests conducted in each cell of the table. However, it also causes each table to be tested (which is equivalent to selecting all the cells in a table and pressing ) and places the significant and insignificant tables in different groups.
 Regression. There are two quite different ways of doing this. It can be done by setting up an Experiment question (in which case each of the different ways of specifying relationships to test, as described in the previous bullet points, can be conducted), or, it can be done by selecting Create > Traditional Multivariate Statistics > Regression, in which case the pvalues are reported (and the user is left to interpret results as being significant or not, based on the pvalues or any other criteria that are considered applicable).
 Creating Segments, where for some models significance tests are presented for coefficients and information criteria, which are a type of significance test, are used to select the number of segments.