Regression - Save Variable(s) - Predicted Values
Creates a new variable containing predicted values for each case in the data from a regression. Observations with missing values in the predictors are not predicted.
Output
Running this QScript will produce a new variable, which will appear in your data set for use in further analyses. For a categorical outcome (Regression - Ordered Logit, Regression - Binary Logit, Regression - Multinomial Logit) the variable will be categorical containing the predicted category for each observation.
Technical details
Uses the predict method from R. Unlike the defaults in most R packages, this implementation assigns predicted values for observations not in the estimation sample. Categorical variables are predicted as discrete (e.g., in Regression - Binary Logit, the predicted values are of the two categories). See Regression - Save Variable(s) - Fitted Values for non-discrete value predictions.
Code
var __webpack_modules__ = ({});
// The module cache
var __webpack_module_cache__ = {};
// The require function
function __webpack_require__(moduleId) {
// Check if module is in cache
var cachedModule = __webpack_module_cache__[moduleId];
if (cachedModule !== undefined) {
return cachedModule.exports;
}
// Create a new module (and put it into the cache)
var module = (__webpack_module_cache__[moduleId] = {
exports: {}
});
// Execute the module function
__webpack_modules__[moduleId](module, module.exports, __webpack_require__);
// Return the exports of the module
return module.exports;
}
// webpack/runtime/rspack_version
(() => {
__webpack_require__.rv = () => ("1.7.2")
})();
// webpack/runtime/rspack_unique_id
(() => {
__webpack_require__.ruid = "bundler=rspack@1.7.2";
})();
includeWeb('QScript R Output Functions');
saveVariables('Predicted values', 'Regression', 'predict(', ')', null, null, 'pred.val', 'Regression');