Regression - Binary Logit

From Q
Jump to: navigation, search

Estimates a binary logit model. Also known as Logistic regression, and Binomial regression.


The table below shows the output when using an optional crosstab interaction variable.


Outcome The variable to be predicted by the predictor variables.

Predictors The variable(s) to predict the outcome.

Algorithm The fitting algorithm. Defaults to Regression but may be changed to other machine learning methods.

Type: You can use this option to toggle between different types of regression models, but note that the other types are not appropriate for a binary outcome variable.

Linear See Regression - Linear Regression.
Binary Logit.
Ordered Logit See Regression - Ordered Logit.
Multinomial Logit See Regression - Multinomial Logit.
Poisson See Regression - Poisson Regression.
Quasi-Poisson See Regression - Quasi-Poisson Regression.
NBD See Regression - NBD Regression.

Robust standard errors Computes standard errors that are robust to violations of the assumption of constant variance (i.e., heteroscedasticity). See Robust Standard Errors. This is only available when Type is Linear.

Missing data See Missing Data Options.


Summary The default; as shown in the example above.
Detail Typical R output, some additional information compared to Summary, but without the pretty formatting.
ANOVA Analysis of variance table containing the results of Chi-squared likelihood ratio tests for each predictor.
Relative Importance Analysis See here and the references for more information. This option is not available for Multinomial Logit. Note that categorical predictors are not converted to be numeric, unlike in Driver (Importance) Analysis - Relative Importance Analysis.The results of a relative importance analysis.
Effects Plot Plots the relationship between each of the Predictors and the Outcome. Not available for Multinomial Logit.

Correction The multiple comparisons correction applied when computing the p-values of the post-hoc comparisons.

Variable names Displays Variable Names in the output instead of labels.

Absolute importance scores Whether the absolute value of Relative Importance Analysis scores should be displayed.

Auxiliary variables Variables to be used when imputing missing values (in addition to all the other variables in the model).

Weight. Where a weight has been set for the R Output, it will automatically applied when the model is estimated. By default, the weight is assumed to be a sampling weight, and the standard errors are estimated using Taylor series linearization (by contrast, in the Legacy Regression, weight calibration is used). See Weights, Effective Sample Size and Design Effects.

Filter The data is automatically filtered using any filters prior to estimating the model.

Crosstab Interaction Optional variable to test for interaction with other variables in the model. See Linear Regression for more details.

Random seed Seed used to initialize the (pseudo)random number generator for the model fitting algorithm. Different seeds may lead to slightly different answers, but should normally not make a large difference.

Additional options are available by editing the code.


See Regression Diagnostics.


Uses the glm from the stats R package. If weights are supplied, the svyglm function from the survey R package is used. See also Regression - Generalized Linear Model.


Yap, J. (2018, August 22). What is logistic regression? [Blog post]. Accessed from

For relative importance analysis: Johnson, J. W. (2000). A heuristic method for estimating the relative weight of predictor variables in multiple regression. Multivariate behavioral research, 35(1), 1-19.


form.dropBox({label: "Outcome", 
            types:["Variable: Numeric, Date, Money, Categorical, OrderedCategorical"], 
            name: "formOutcomeVariable",
            prompt: "Independent target variable to be predicted"});
form.dropBox({label: "Predictor(s)",
            types:["Variable: Numeric, Date, Money, Categorical, OrderedCategorical"], 
            name: "formPredictorVariables", multi:true,
            prompt: "Dependent input variables"});

var algorithm = form.comboBox({label: "Algorithm",
               alternatives: ["CART", "Deep Learning", "Gradient Boosting", "Linear Discriminant Analysis",
                              "Random Forest", "Regression", "Support Vector Machine"],
               name: "formAlgorithm", default_value: "Regression",
               prompt: "Machine learning or regression algorithm for fitting the model"}).getValue();
var regressionType = "";
if (algorithm == "Regression")
    regressionType = form.comboBox({label: "Regression type", 
                                        alternatives: ["Linear", "Binary Logit", "Ordered Logit", "Multinomial Logit", "Poisson",
                                                                                                          "Quasi-Poisson", "NBD"], 
                                        name: "formRegressionType", default_value: "Binary Logit",
                                        prompt: "Select type according to outcome variable type"}).getValue();
form.setHeading((regressionType == "" ? "" : (regressionType + " ")) + algorithm);

missing_data_options = ["Error if missing data", "Exclude cases with missing data", "Imputation (replace missing values with estimates)"];

if (algorithm == "Support Vector Machine")
    output_options = ["Accuracy", "Prediction-Accuracy Table", "Detail"];
if (algorithm == "Gradient Boosting") 
    output_options = ["Accuracy", "Importance", "Prediction-Accuracy Table", "Detail"];
if (algorithm == "Random Forest")
    output_options = ["Importance", "Prediction-Accuracy Table", "Detail"];
if (algorithm == "Deep Learning")
    output_options = ["Accuracy", "Prediction-Accuracy Table", "Cross Validation", "Network Layers"];
if (algorithm == "Linear Discriminant Analysis")
    output_options = ["Means", "Detail", "Prediction-Accuracy Table", "Scatterplot", "Moonplot"];

if (algorithm == "CART") {
    output_options = ["Sankey", "Tree", "Text", "Prediction-Accuracy Table", "Cross Validation"];
    missing_data_options = ["Error if missing data", "Exclude cases with missing data",
                             "Use partial data", "Imputation (replace missing values with estimates)"]
if (algorithm == "Regression") {
    if (regressionType == "Multinomial Logit")
        output_options = ["Summary", "Detail", "ANOVA"];
        output_options = ["Summary", "Detail", "ANOVA", "Relative Importance Analysis", "Effects Plot"]
    if (regressionType == "Linear")
        missing_data_options = ["Error if missing data", "Exclude cases with missing data", "Use partial data (pairwise correlations)", "Multiple imputation"];
        missing_data_options = ["Error if missing data", "Exclude cases with missing data", "Multiple imputation"];

var output = form.comboBox({label: "Output", prompt: "The type of output used to show the results", 
              alternatives: output_options, name: "formOutput", default_value: output_options[0]}).getValue();
var missing = form.comboBox({label: "Missing data", 
              alternatives: missing_data_options, name: "formMissing", default_value: "Exclude cases with missing data",
              prompt: "Options for handling cases with missing data"}).getValue();
form.checkBox({label: "Variable names", name: "formNames", default_value: false, prompt: "Display names instead of labels"});


if (algorithm == "Support Vector Machine")
    form.textBox({label: "Cost", name: "formCost", default_value: 1, type: "number",
                  prompt: "High cost produces a complex model with risk of overfitting, low cost produces a simpler mode with risk of underfitting"});

if (algorithm == "Gradient Boosting") {
    form.comboBox({label: "Booster", 
                  alternatives: ["gbtree", "gblinear"], name: "formBooster", default_value: "gbtree",
                  prompt: "Boost tree or linear underlying models"})
    form.checkBox({label: "Grid search", name: "formSearch", default_value: false,
                   prompt: "Search for optimal hyperparameters"});

if (algorithm == "Random Forest")
    if (output == "Importance")
        form.checkBox({label: "Sort by importance", name: "formImportance", default_value: true});

if (algorithm == "Deep Learning") {
    form.numericUpDown({name:"formEpochs", label:"Maximum epochs", default_value: 10, minimum: 1, maximum: 1000000,
                        prompt: "Number of rounds of training"});
    form.textBox({name: "formHiddenLayers", label: "Hidden layers", prompt: "Comma delimited list of the number of nodes in each hidden layer", required: true});
    form.checkBox({label: "Normalize predictors", name: "formNormalize", default_value: true,
                   prompt: "Normalize to zero mean and unit variance"});

if (algorithm == "Linear Discriminant Analysis") {
    if (output == "Scatterplot")
        form.colorPicker({label: "Outcome color", name: "formOutColor", default_value:"#5B9BD5"});
        form.colorPicker({label: "Predictors color", name: "formPredColor", default_value:"#ED7D31"});
    form.comboBox({label: "Prior", alternatives: ["Equal", "Observed",], name: "formPrior", default_value: "Observed",
                   prompt: "Probabilities of group membership"})

if (algorithm == "CART") {
    form.comboBox({label: "Pruning", alternatives: ["Minimum error", "Smallest tree", "None"], 
                   name: "formPruning", default_value: "Minimum error",
                   prompt: "Remove nodes after tree has been built"})
    form.checkBox({label: "Early stopping", name: "formStopping", default_value: false,
                   prompt: "Stop building tree when fit does not improve"});
    form.comboBox({label: "Predictor category labels", alternatives: ["Full labels", "Abbreviated labels", "Letters"],
                   name: "formPredictorCategoryLabels", default_value: "Abbreviated labels",
                   prompt: "Labelling of predictor categories in the tree"})
    form.comboBox({label: "Outcome category labels", alternatives: ["Full labels", "Abbreviated labels", "Letters"],
                   name: "formOutcomeCategoryLabels", default_value: "Full labels",
                   prompt: "Labelling of outcome categories in the tree"})
    form.checkBox({label: "Allow long-running calculations", name: "formLongRunningCalculations", default_value: false,
                   prompt: "Allow predictors with more than 30 categories"});

if (algorithm == "Regression") {
    if (missing == "Multiple imputation")
        form.dropBox({label: "Auxiliary variables",
            types:["Variable: Numeric, Date, Money, Categorical, OrderedCategorical"], 
            name: "formAuxiliaryVariables", required: false, multi:true,
            prompt: "Additional variables to use when imputing missing values"});
    form.comboBox({label: "Correction", alternatives: ["None", "False Discovery Rate", "Bonferroni"], name: "formCorrection",
                   default_value: "None", prompt: "Multiple comparisons correction applied when computing p-values of post-hoc comparisons"});
    var is_RIA = (output == "Relative Importance Analysis");
    if (regressionType == "Linear" && missing != "Use partial data (pairwise correlations)" && missing != "Multiple imputation")
        form.checkBox({label: "Robust standard errors", name: "formRobustSE", default_value: false,
                       prompt: "Standard errors are robust to violations of assumption of constant variance"});
    if (output == "Relative Importance Analysis")
        form.checkBox({label: "Absolute importance scores", name: "formAbsoluteImportance", default_value: false,
                       prompt: "Show absolute instead of signed importances"});
    if (regressionType != "Multinomial Logit" && (is_RIA || output == "Summary"))
        form.dropBox({label: "Crosstab interaction", name: "formInteraction", types:["Variable: Numeric, Date, Money, Categorical, OrderedCategorical"],
                      required: false, prompt: "Categorical variable to test for interaction with other variables"});

form.numericUpDown({name:"formSeed", label:"Random seed", default_value: 12321, minimum: 1, maximum: 1000000,
                    prompt: "Initializes randomization for imputation and certain algorithms"});

model <- MachineLearning(formula = QFormula(formOutcomeVariable ~ formPredictorVariables),
                                    algorithm = formAlgorithm,
                                    weights = QPopulationWeight, subset = QFilter,
                                    missing = formMissing, output = formOutput, show.labels = !formNames,
                                    seed = get0("formSeed"),
                                    cost = get0("formCost"),
                                    booster = get0("formBooster"),
                           = get0("formSearch"),
                           = get0("formImportance"),
                                    hidden.nodes = get0("formHiddenLayers"),
                                    max.epochs = get0("formEpochs"),
                                    normalize = get0("formNormalize"),
                                    outcome.color = get0("formOutColor"),
                                    predictors.color = get0("formPredColor"),
                                    prior = get0("formPrior"),
                                    prune = get0("formPruning"),
                                    early.stopping = get0("formStopping"),
                                    predictor.level.treatment = get0("formPredictorCategoryLabels"),
                                    outcome.level.treatment = get0("formOutcomeCategoryLabels"),
                                    long.running.calculations = get0("formLongRunningCalculations"),
                                    type = get0("formRegressionType"),
                           = get0("formAuxiliaryVariables"),
                                    correction = get0("formCorrection"),
                           = get0("formRobustSE", ifnotfound = FALSE),
                                    importance.absolute = get0("formAbsoluteImportance"),
                                    interaction = get0("formInteraction"),
                                    relative.importance = formOutput == "Relative Importance Analysis")