Machine Learning - Save Variable(s) - Discriminant Variables
Jump to navigation
Jump to search
Creates a new question containing the discriminant variables from Machine Learning - Linear Discriminant Analysis.
Example
A table of discriminant variables.
Technical details
Unlike the defaults in most R packages, this implementation predicts values for observations not in the estimation sample.
Code
var __webpack_modules__ = ({});
// The module cache
var __webpack_module_cache__ = {};
// The require function
function __webpack_require__(moduleId) {
// Check if module is in cache
var cachedModule = __webpack_module_cache__[moduleId];
if (cachedModule !== undefined) {
return cachedModule.exports;
}
// Create a new module (and put it into the cache)
var module = (__webpack_module_cache__[moduleId] = {
exports: {}
});
// Execute the module function
__webpack_modules__[moduleId](module, module.exports, __webpack_require__);
// Return the exports of the module
return module.exports;
}
// webpack/runtime/rspack_version
(() => {
__webpack_require__.rv = () => ("1.7.2")
})();
// webpack/runtime/rspack_unique_id
(() => {
__webpack_require__.ruid = "bundler=rspack@1.7.2";
})();
includeWeb('QScript R Output Functions');
saveVariables('Discriminant Variables', 'LDA', 'DiscriminantVariables(', ')', null, null, 'discrim.var', 'LDA');