Dimension Reduction - Save Variable(s) - Components/Dimensions

From Q
Jump to navigation Jump to search

Generate a new set of variables in your data set which contains the transformed variables from dimension reduction methods such as Principal Components Analysisprincipal components analysis, Principal Components Analysis (Text)principal components analysis (text), Multiple Correspondence Analysismultiple correspondence analysis or t-SNEt-SNE. The new variables can then be used as inputs into other analyses. You must select the R output which contains your analysis before running this script.

Example

A table of the transformed variables from t-SNE.

Code

var __webpack_modules__ = ({});
// The module cache
var __webpack_module_cache__ = {};

// The require function
function __webpack_require__(moduleId) {

// Check if module is in cache
var cachedModule = __webpack_module_cache__[moduleId];
if (cachedModule !== undefined) {
return cachedModule.exports;
}
// Create a new module (and put it into the cache)
var module = (__webpack_module_cache__[moduleId] = {
exports: {}
});
// Execute the module function
__webpack_modules__[moduleId](module, module.exports, __webpack_require__);

// Return the exports of the module
return module.exports;

}

// webpack/runtime/rspack_version
(() => {
__webpack_require__.rv = () => ("1.7.2")
})();
// webpack/runtime/rspack_unique_id
(() => {
__webpack_require__.ruid = "bundler=rspack@1.7.2";
})();
includeWeb('QScript R Output Functions');

saveVariables('Scores', 'Principal Components Analysis, Principal Components Analysis (Text), Multidimensional Scaling, t-SNE, or Multiple Correspondence Analysis', 'fitted(', ')', null, null, null, ['flipFactorAnalysis', 'mcaObj', '2Dreduction']);

See Also