Dimension Reduction - Diagnostic - Scree Plot

From Q
Jump to navigation Jump to search


Chart the eigenvalues from a factor analysis or principal components analysis (created, for example, using Dimension Reduction - Principal Components Analysis).

How to Create

As a separate output in your report

  1. Add the object by selecting from the menu Anything > Advanced Analysis > Dimension Reduction > Diagnostic > Scree PlotCreate > Dimension Reduction > Diagnostic > Scree Plot
  2. Under Inputs select your PCA or factor analysis output


Within your PCA output created by Dimension Reduction - Principal Components Analysis

  1. Change the Inputs > Display drop-down to Scree Plot


Example

Example output:

Options

Principal components analysis An R Output containing a factor analysis or principal components analysis. This does not need to be created with Dimension Reduction - Principal Components Analysis (you can make your own factor analysis or PCA), but the item does need to have a property called values.

Code

var __webpack_modules__ = ({});
// The module cache
var __webpack_module_cache__ = {};

// The require function
function __webpack_require__(moduleId) {

// Check if module is in cache
var cachedModule = __webpack_module_cache__[moduleId];
if (cachedModule !== undefined) {
return cachedModule.exports;
}
// Create a new module (and put it into the cache)
var module = (__webpack_module_cache__[moduleId] = {
exports: {}
});
// Execute the module function
__webpack_modules__[moduleId](module, module.exports, __webpack_require__);

// Return the exports of the module
return module.exports;

}

// webpack/runtime/rspack_version
(() => {
__webpack_require__.rv = () => ("1.7.2")
})();
// webpack/runtime/rspack_unique_id
(() => {
__webpack_require__.ruid = "bundler=rspack@1.7.2";
})();
var heading_text = "Scree Plot";
if (!!form.setObjectInspectorTitle)
    form.setObjectInspectorTitle(heading_text);
else
    form.setHeading(heading_text);

form.dropBox({ name: "inputItem", label: "Principal components analysis", types: ["R:flipFactorAnalysis,principal,princomp,fa"],
    prompt: "Output of PCA" });
library(flipDimensionReduction)
scree.plot <- ScreePlot(QInputs(inputItem))

See also