Multiple Comparisons t-Test with Bonferroni Correction
Jump to navigation
Jump to search
The test statistic is:
[math]\displaystyle{ t=\frac{\bar x_1-\bar x_2}{\sqrt{\frac{\sum^{J}_{j=1}\sum^{n_j}_{i=1} w_{ij}(x_{ij} - \bar x_j)^2}{v}(\frac{1}{e_1}+\frac{1}{e_1})}} }[/math]
where:
- [math]\displaystyle{ \bar x_1 }[/math] and [math]\displaystyle{ \bar x_2 }[/math] are the means of the two groups being compared and [math]\displaystyle{ \bar x_j }[/math] is the mean of the [math]\displaystyle{ j }[/math] of [math]\displaystyle{ J }[/math] groups,
- when applying the test to Repeated Measures, each respondent’s average is initially subtracted from their data and it is this corrected data that constitutes of [math]\displaystyle{ x_{ij} }[/math],
- [math]\displaystyle{ n_j }[/math] is the number of observations in the [math]\displaystyle{ j }[/math]th of [math]\displaystyle{ J }[/math] groups,
- [math]\displaystyle{ w_{ij} }[/math] is the Calibrated Weight for the [math]\displaystyle{ i }[/math]th observation in the [math]\displaystyle{ j }[/math] group,
- [math]\displaystyle{ e_j }[/math] is the Effective Sample Size for the [math]\displaystyle{ j }[/math] group,
- [math]\displaystyle{ v = (J - 1)(\sum^J_{j=1} e_j - 1) }[/math] for Repeated Measures and [math]\displaystyle{ v = \sum^J_{j=1} e_j - J }[/math] otherwise.
- [math]\displaystyle{ p \approx 2\Pr(t_v \ge |t|) }[/math],
- the p-value is then corrected as [math]\displaystyle{ pJ(J-1)/2 }[/math]
Circumstances when this test is applied
- Computing either:
- Column Comparisons
- A Planned Tests Of Statistical Significance for a row or column of a table.
- This test has been selected in the Statistical Assumptions setting of Multiple comparison correction > Column comparisons