Regression - Diagnostic - StandardRPlot - Prediction-Accuracy Table
Jump to navigation
Jump to search

Create a table showing the observed and predicted values, as a heatmap
Code
var __webpack_modules__ = ({});
// The module cache
var __webpack_module_cache__ = {};
// The require function
function __webpack_require__(moduleId) {
// Check if module is in cache
var cachedModule = __webpack_module_cache__[moduleId];
if (cachedModule !== undefined) {
return cachedModule.exports;
}
// Create a new module (and put it into the cache)
var module = (__webpack_module_cache__[moduleId] = {
exports: {}
});
// Execute the module function
__webpack_modules__[moduleId](module, module.exports, __webpack_require__);
// Return the exports of the module
return module.exports;
}
// webpack/runtime/rspack_version
(() => {
__webpack_require__.rv = () => ("1.7.2")
})();
// webpack/runtime/rspack_unique_id
(() => {
__webpack_require__.ruid = "bundler=rspack@1.7.2";
})();
var heading_text = "Prediction-Accuracy Table";
if (!!form.setObjectInspectorTitle)
form.setObjectInspectorTitle(heading_text);
else
form.setHeading(heading_text);
form.dropBox({ name: "formInput", label: "Regression:", types: ["RItem:Regression,MachineLearning,MachineLearningEnsemble"],
prompt: "Select a Regression or Machine Learning output to show diagnostics for" });
library(flipRegression)
prediction.accuracy <- ConfusionMatrix(QInputs(formInput), QFilter, QPopulationWeight)