Paired t-Test of Proportions
Jump to navigation
Jump to search
Where [math]\displaystyle{ g_1 }[/math] and [math]\displaystyle{ g_2 }[/math] are the two proportions, [math]\displaystyle{ n }[/math] is the sample size, and [math]\displaystyle{ s_{g_1 - g_2} }[/math] is an estimate of the standard error of the difference between the proportions:
[math]\displaystyle{ t=\frac{g_1-g_2}{s_{g_1-g_2}} }[/math]
where
- [math]\displaystyle{ p = 2\Pr(t_v \ge |t|) }[/math],
- [math]\displaystyle{ v = n - 1 }[/math],
- [math]\displaystyle{ s_{g_1 - g_2} }[/math] is computed as the Standard Error of [math]\displaystyle{ d }[/math],
- the value for the [math]\displaystyle{ i }[/math]th observation is computed as [math]\displaystyle{ d_i = x_1 - x_2 }[/math],
- [math]\displaystyle{ x_1,x_2 \in {\{0,1\}} }[/math] are the observed values on the two variables.