Complex Samples Dependent Z-Test - Comparing a Sub-Group Proportion to Total
Jump to navigation
Jump to search
Where [math]\displaystyle{ g_t }[/math] is the proportion in the total sample and [math]\displaystyle{ g_s }[/math] is the proportion in the sub-group, [math]\displaystyle{ n_t }[/math] and [math]\displaystyle{ n_s }[/math] are their respective effective sample sizes, and [math]\displaystyle{ w_s }[/math] is the proportion of the total population in sub-group [math]\displaystyle{ s }[/math]:
[math]\displaystyle{ z=\frac{g_t - g_s}{(1 - w_s)\sqrt{d_{eff}(se^2_s + se^2_k)}} }[/math],
where:
- [math]\displaystyle{ p = 2(1-\Phi(|z|)) }[/math].
- [math]\displaystyle{ g_k = (g_t-g_s w_s)/(1-w_s) }[/math],
- [math]\displaystyle{ se_k = \sqrt{\frac{g_k(1 - g_k)}{n_t - n_s - b}} }[/math],
- [math]\displaystyle{ se_g = \sqrt{\frac{g_g(1 - g_g)}{n_s -b}} }[/math],
- [math]\displaystyle{ b }[/math] is 1 if Bessel's correction is selected for Proportions in Statistical Assumptions and 0 otherwise,
- [math]\displaystyle{ d_{eff} }[/math] is Extra Deff, and
- [math]\displaystyle{ w_s }[/math] is the proportion of the Population represents by the sub-group.