Calculation - Minimum Each Column - Table(s)
This tool is used to compute the minimum value for each column in a table.
Example
Consider the following table which shows the average number of times the respondents order meals at different fast food chains in a given month:
We can use Maximum Each Column to compute the smallest average for each column across all occasions:
Options
Input The table to be used in the calculation.
Calculate for inputs with incomplete data If this option is checked, than any missing values the input will be ignored in the calculation. If unchecked, then missing values are not removed before calculation and will propagate as missing values in the output.
Rows to include This listbox shows all row labels in the input. The calculation will not performed for any rows whose labels are unselected here and they will not be shown in the output. By default the "SUM" and "NET" rows and columns are not shown in the output.
Columns to include As above, but for columns; any column labels unselected here will not be included in the output.
Technical Details
When Calculate for inputs with incomplete data is checked and the input to the calculation consists entirely of missing values, then the returned output value is set to missing data. Prior to 5th October, 2021 the returned output value was different in this situation. For example, consider the input into the calculation with the three values.
A | B | C |
---|---|---|
NaN | NaN | NaN |
Then applying Minimum Each Column to this input returned the value of Infinity for each element before 5th October, 2021. After this date, the Minimum Each Column function returns the output value of NaN for each element.
Minimum Each Column | |||
---|---|---|---|
A | B | C | |
before 5th October, 2021 | Infinity | Infinity | Infinity |
after 5th October, 2021 | NaN | NaN | NaN |
Code
const UNCHECK_NAMES = ["SUM", "NET", "TOTAL"];
const MULTI_QUESTIONTYPES = ["Text - Multi", "Pick One - Multi",
"Pick Any - Compact",
"Pick Any - Grid", "Number - Grid"];
const ALLOWED_R_CLASSES = ["NULL", "numeric", "integer", "logical", "factor", "matrix", "array", "data.frame", "table"];
function getInputNames(input, dim = 0){
var input_names;
var listbox_names = {};
let input_type = input.type;
if (input_type === "R Output") {
try {
var output_class = input.outputClasses;
if (output_class.includes("array") || output_class.includes("matrix")) {
var dimnames = input.data.getAttribute([], "dimnames");
if (dim < dimnames.length && dimnames[dim] != null)
input_names = dimnames[dim];
else
input_names = [];
} else if (output_class.includes("data.frame")) {
if (dim === 1)
input_names = input.data.getAttribute([], "names");
else {
let row_names = input.data.getAttribute([], "row.names");
input_names = typeof(row_names[0]) === "string" ? row_names : [];
}
} else {
input_names = dim === 0 ? input.data.getAttribute([], "names") : [];
}
}catch(e) {
input_names = [];
}
listbox_names["names"] = input_names;
listbox_names["initial"] = filterSingleNames(input_names);
} else {
let primary_type = input.primary.variableSetStructure;
let has_multi_or_grid = primary_type.endsWith("Multi") || primary_type.endsWith("Grid");
let has_columns = !!input.secondary || has_multi_or_grid || input.cellStatistics.length > 1;
listbox_names = {names: ["foo"], initial: has_columns ? ["bar"] : []};//getTableDimNames(input, dim);
}
// DS-3147: replace newline chars/any whitespace with single space
if (listbox_names["names"].length > 0) {
Object.keys(listbox_names).map(key => {
listbox_names[key] = listbox_names[key].map(str => typeof(str) === "string" ? str.replace(/\s+/g, " ") : str);
});
}
return listbox_names;
}
function getTableDimNames(table, dim)
{
let has_primary = table.primary != null;
let table_output_names = {"names": [], "initial": []};
if (has_primary)
{
let table_output = table.calculateOutput();
let is_crosstab_or_multi_or_raw = table.secondary.type === "Question"
|| MULTI_QUESTIONTYPES.includes(table.primary.questionType)
|| table.secondary === "RAW DATA";
if (table.primary.isBanner && table.secondary === "SUMMARY")
is_crosstab_or_multi_or_raw = false;
if (dim === 0)
{
let row_names = table_output.rowLabels;
let row_spans = table_output.rowSpans;
let row_indices = table_output.rowIndices(include_nets_sums = false);
if (row_spans.length > 1)
{
table_output_names = flattenSpanNames(row_names, row_spans);
} else
{
let initial = !!row_indices ? row_names.filter((name, i) => row_indices.includes(i)) : filterSingleNames(row_names);
table_output_names = {"names": row_names, "initial": initial};
}
}
if (dim === 1)
{
let n_columns = table_output.numberColumns;
let col_spans = n_columns < 2 ? [] : table_output.columnSpans;
let col_indices = table_output.columnIndices(include_nets_sums = false);
let col_names = [];
if (col_spans.length > 1)
{
col_names = table_output.columnLabels;
table_output_names = flattenSpanNames(col_names, col_spans);
} else
{
col_names = is_crosstab_or_multi_or_raw ? table_output.columnLabels : table_output.statistics;
let initial = !!col_indices ? col_names.filter((name, i) => col_indices.includes(i)) : filterSingleNames(col_names);
table_output_names = {"names": col_names, "initial": initial};
}
}
}
return table_output_names;
}
function filterSingleNames(names)
{
return names.filter(n => !UNCHECK_NAMES.includes(n));
}
function flattenSpanNames(labels, span_names)
{
let span_length = span_names.length;
let span_labels = labels;
let unselect_labels = span_names.filter(span => UNCHECK_NAMES.includes(span["label"]));
let unselect_span_indices = [];
if(unselect_labels.length > 0)
{
unselect_span_indices = unselect_labels.map(unselect => unselect["indices"]);
unselect_span_indices = [].concat.apply([], unselect_span_indices);
unselect_span_indices = uniq(unselect_span_indices);
}
let unselected_base_indices = labels.map((l, i) => UNCHECK_NAMES.includes(l) ? i : "").filter(Number);
let unselected_indices = [].concat.apply([], [unselect_span_indices, unselected_base_indices]);
unselected_indices = uniq(unselected_indices)
labels.forEach((item, i) => {
for (j = 0; j < span_length; j++)
{
let curr_span = span_names[j];
if (curr_span["indices"].includes(i))
{
span_labels[i] = span_names[j]["label"] + " - " + span_labels[i];
}
}
});
let initial_values = span_labels.filter((label, i) => !unselected_indices.includes(i));
return {"names": span_labels, "initial": initial_values};
}
function recursiveGetItemByGuid(group_item, guid) {
var cur_sub_items = group_item.subItems;
for (var j = 0; j < cur_sub_items.length; j++)
{
if (cur_sub_items[j].type == "ReportGroup") {
var res = recursiveGetItemByGuid(cur_sub_items[j], guid);
if (res != null)
return(res)
}
else if (cur_sub_items[j].guid == guid)
return(cur_sub_items[j]);
}
return null;
}
let user_input = form.dropBox({name: "formInput", label: "Input",
types: ["table", "RItem: " + ALLOWED_R_CLASSES.join(", ")],
prompt: "Input data with columns to sum, e.g. a Table, R matrix"}).getValue();
form.comboBox({name: 'formRemoveMissing',
alternatives: ['Yes (show warning)', 'No', 'Yes'],
label: 'Calculate for columns with incomplete data',
prompt: 'If set to \'Yes\', any missing values are removed from the data before the calculation occurs. ' +
'If set to \'No\', columns with any missing values will be assigned a missing value. ' +
'Columns whose values are entirely missing, will always be assigned a missing value ' +
'regardless of this setting.',
default_value: 'Yes (show warning)'});
let row_names = {"names": [], "initial": []};
let col_names = {"names": [], "initial": []};
if (!!user_input)
{
var input = recursiveGetItemByGuid(project.report, user_input.guid);
row_names = getInputNames(input, 0);
col_names = getInputNames(input, 1);
}
function uniq(a) {
var seen = {};
return a.filter(function(item) {
return seen.hasOwnProperty(item) ? false : (seen[item] = true);
});
}
form.textBox({name: "formIncludeRows", label: "Rows to exclude", prompt: "Select the row labels to be excluded in the output table.", default_value: "NET; SUM", required: false});
form.textBox({name: "formIncludeColumns", label: "Columns to exclude", prompt: "Select the columns labels to be excluded in the output table.", default_value: "NET; SUM", required: false});
form.setHeading("Minimum Each Column");
library(verbs)
removal.choices <- list(formIncludeRows, formIncludeColumns)
categories.to.remove <- ParseCategoriesToRemove(removal.choices, list(formInput))
remove.rows <- categories.to.remove[[1L]]
remove.columns <- categories.to.remove[[2L]]
remove.missing <- startsWith(formRemoveMissing, "Yes")
warn <- if (endsWith(formRemoveMissing, "(show warning)")) TRUE else "MuffleMissingValueWarning"
min.each.column <- MinEachColumn(QInputs(formInput),
subset = ValidateFilterForEachColumnVariants(QInputs(formInput), QFilter),
remove.missing = remove.missing,
remove.rows = remove.rows,
remove.columns = remove.columns,
warn = warn)